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Abstract: A hyperconjugative influence may be an additional factor in Z-alkylation being promoted by a
syn-axial ester in enolates formed from conformationally immobilised 6-cyclic 8-ketoesters.

The syn-axial ester in the extended enolate generated from a lO—eﬂloxycarbonyl-A‘-octalG-one' has
been shown to promote Z-alkylation (syn to C-10 ethoxycarbonyl) at C-4.” A polar effect was
suggested®® as the major influence of the ester group, but, despite attempts to strengthen its case,
the suggestion appears not to have won wide acceptance for the reason that, compared with the change
from Z to E (syn to C-10 H to ami to C-10 Me) seen on §oing from H to Me as the syn-axial substit-
uent in a related instance (but under different conditions),” the reverse change, E to Z, on going from
Me to ester appeared moderate? and an explanation based on the smaller steric demand of the ester
group compared with a methyl® seemed sufficient.® However, though further studies have been
recommended,” comparisons of changes in the stereochemical preferences of electrophilic reactions on
enolates (e.g. al:frlations) conducted under the same conditions (substrate, anion generation, nature of
the counterion/alkylating agent, solvent, etc.) through a series of appropriately conformationally
immobilised 6-cyclic oxo-systems, where the syn-axial substituent is, successively, H, CO,R and Me,
do not appear to have been reported.

For the reason that the formation of enolates, with the enolate part planar, may remain unfettered,®
the 3-keto-2-esters,’ 1 - 3,° were chosen and two alkylating agents, methyl iodide and benzyl bro-
mide, with a possible difference in steric demand, were employed. Potassium carbonate was the
enolate-generating agent and acetone the medium. The alkylations could be presumed to be those of
the free (or solubilised) enolate ions since acetone, a Class C solvent,’ can solvate only the counte-
rions (K*). The major advantages of our conditions were that quantitative yields of epimeric mixtures
of C-2 Z- and E-alkylated products (respectively, 4a - 6b and 7a - 9b) were realised and the forma-
tion of O-alkylated products was totally suppressed.* The Z/E alkylation ratios are presented as per-
centages in Table 1 overleaf.
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Table 1: Stereoselectivity in the Alkylation of Cyclic 8-Ketoesters 1 - 3

Substrate R Alkylating agent  Z/E ratio(%)
1 H CH,1 69:31 (4a:7a)
1 H $CH_Br 21:79 (4b:7b)
2 C C 10:90 (5a:8a)
2 C ®CH Br 02:98 (5b:8b)
3 CO.Et C 64:36 (6a:9a)
3 COZEt $CIHBr 17:83 (6b:9b)

Reactions comtinued until the B-keto esters were entirely consumed (tkc; .. 12 hr). Characterisation data on the reactants 1 - 3 and their
alkylsted products 48 - 9 available from authors. Z/E ratios (+35%) based on integration of salient signals in 400 MMz 'H NMR
» of prodx i from at least three reactions in each case.

Assignment of stereochemistry to the al

lated products is based on the following consistencies
seen among 'H and '*C NMR spectral data

le 2): A. the change in 'H C-2 Me chemical shift on

Table 2: 'H and '*C Chemical Shifts of Stereochemical Significance in

Products 4a - 9b*
C-10 Me® C-2 Me® $CH Hy CO,CH AI‘I,CH:,‘l C-2 Me
('H) (M (J,p:89) (J1,72;09) (*0)
4a - 1.47 - - 20.93
7a - 1.27 - - 21.53
4b - - 2.80 & 3.30 - -
(13.6; 0.50)
vl - - 3.15&3.39 - -
(14.2; 0.24)
5a° 0.85 1.35 - f
8a 0.93 1.27 - - 23.15
5b° 0.82 - 2.84 £3.35 - £
(15.0; 0.51)
8b 0.90 - 298 & 3.14 - -
(13.2; 0.16)
6a 1.31 - 4.15 & 4.20 20.95
(11.0 & 7.0; 0.05)
9a 1.26 - 4.00 & 4.24 23.15
(11.1 & 7.3; 0.17)
6b - - 2.890 &3.32 3.98 &£ 4.16 -
(13.2; 0.43) (11.2 & 7.3; 0.09)
9b - - 2.92 & 3.10 3.94 & 4.22 -
(13.4;0.18) (12.1 & 8.0; 0.18)
* 'H at 400 MHz; "C at 100 MHz; CDCl,; 4 ppm ex-TMS; ® 3H, singlets; © 2H, AB-quartet; ° 2H, AB-quartel of quartets; * Culled

from spectra of mixtures, Sa with 82 and Sb with 8b; fBe spectra could not be recorded.

oing from 4a to 7a, Sa to 8a or 6a to 9a is analogous to that on going from 2(ax)-methyl- to
g(eq),lO—dimethyl-Z-a.cetyldecal—fS-one (4 ppm 1.40 to 1.22)“5 B. A8, of the benzyl CH H, AB-quar-
tets in 4b, §b and 6b are larger than those in 7b, 8b and 9b'%; C. dhe AB-quartets of q‘uaﬁets due to
the C-10 CO,Et CH H, in 9a and 9b show larger AB-anisochrony than in 6a and 6b 3. D. the '3C
resonances of the C-3(ax) Me's in 4a and 6a are upfield of those of the C-2(eq) Me's in 7a and 9a'%;
E. B-ketoester 2 and its methylated products 5a & 8a have been described'® (reported!® C-Me 'H
shifts: 0.82 & 1.37 in 5a and 0.93 & 1.28 in 8a).



The stereochemical preference of methylation changes from predominantly Z in 1 to very largely £
in 2 and dramatically back to Z in 3 to abowt the same extent as with 1. Both a reduced electrophilici-
ty and a consequent possible enhanced steric demand due, at least in , to decreased C-2—E* dis-
tance in the transition state'® could be the reasons for the reversal of Z/E ratio in the benzylations. But
the changes in stereochemical preference found with the methylations persist in the benzylations and
factors responsible to operate in the same manner in the two alkylations.

Most interesting, ever, is the close similarity the Z/F ratios in the ester-case 3 bear to those in
the H-case 1. A factor, be it polar, must be seen as operative, in addition to the lesser steric demand
of CO,Et as compared to Me, if one is to avoid being driven to the conclusion that the steric demand
of CO,Et is the same as that of H.*> An alternative to the putative polar effect of a syn-axial ester
group 1s available under the currently discussed h'{{aewonjugative model.!” If delocalisation from the
o-orbital of the C-1—H{ax) bond into the or; orbital of the incipient C-2—E* bond is better than that
from the C-10—C-1 bond in accordance with the model, the Z-preference in the H-system 1 can be
explained. While the E-preference in the case of the Me system 2 may result from the high steric
demand of a methyl,* the inductive electron-release effect of that group may render the hyperconjuga-
tive ability of the C-10—C-1 bond better than that of the C-1--H(ax) bond and encourage E-attack.
The situation could be reversed again, to one that favours Z-attack, when electron withdrawal by
the ester function makes the C-1-H(ax) bond a better electron donor than the C-10—C-1 bond.
If these propositions are supported by theory-based computations, a factor in addition to the polar
effect, if any, of the ester group may be identified and the steep fall in Z/E ratios, attending the
change H to Me, need not be due purely to the steric reason.

Our results bridge, partly atleast, the findings reported in refs. 2 and 3. The roles of solvent'® and
counterion® in conditioning the stereoselectivity in B8-ketoesters 1 - 3 are currently under examina-
tion.
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